Spatial and temporal correlation between neuron loss and neuroinflammation in a mouse model of neuronopathic Gaucher disease.
نویسندگان
چکیده
Gaucher disease (GD), the most common lysosomal storage disorder, is caused by a deficiency in the lysosomal enzyme glucocerebrosidase (GlcCerase), which results in intracellular accumulation of glucosylceramide (GlcCer). The rare neuronopathic forms of GD are characterized by profound neurological impairment and neuronal cell death, but little is known about the neuropathological changes that underlie these events. We now systematically examine the onset and progression of various neuropathological changes (including microglial activation, astrogliosis and neuron loss) in a mouse model of neuronopathic GD, and document the brain areas that are first affected, which may reflect vulnerability of these areas to GlcCerase deficiency. We also identify neuropathological changes in several brain areas and pathways, such as the substantia nigra reticulata, reticulotegmental nucleus of the pons, cochlear nucleus and the somatosensory system, which could be responsible for some of the neurological manifestations of the human disease. In addition, we establish that microglial activation and astrogliosis are spatially and temporally correlated with selective neuron loss.
منابع مشابه
Neuronal accumulation of glucosylceramide in a mouse model of neuronopathic Gaucher disease leads to neurodegeneration.
Gaucher disease has recently received wide attention due to the unexpected discovery that it is a genetic risk factor for Parkinson's disease. Gaucher disease is caused by the defective activity of the lysosomal enzyme, glucocerebrosidase (GCase; GBA1), resulting in intracellular accumulation of the glycosphingolipids, glucosylceramide and psychosine. The rare neuronopathic forms of GD (nGD) ar...
متن کاملP-111: An Attempt to Facilitate the Production of Transgenic Mouse As A Model for Gene Therapy of Gaucher Disease
Background: Gaucher disease is an autosomal recessive inherited lysosomal storage disorder that affects many of the body's organs and tissues by defective function of the catabolic enzyme β-glucocerebrosidase. Gene therapy is one of the efficient ways for treatment of this disease. Due to the lack of appropriate animal models, in the field of gene therapy little progress has been done.Mate...
متن کاملMurine models of acute neuronopathic Gaucher disease.
Gaucher disease (GD) is an autosomal recessive lysosomal storage disorder caused by mutations in the glucosidase, beta, acid (GBA) gene that encodes the lysosomal enzyme glucosylceramidase (GCase). GCase deficiency leads to characteristic visceral pathology and, in some patients, lethal neurological manifestations. Here, we report the generation of mouse models with the severe neuronopathic for...
متن کاملViable Neuronopathic Gaucher Disease Model in Medaka (Oryzias latipes) Displays Axonal Accumulation of Alpha-Synuclein
Homozygous mutations in the glucocerebrosidase (GBA) gene result in Gaucher disease (GD), the most common lysosomal storage disease. Recent genetic studies have revealed that GBA mutations confer a strong risk for sporadic Parkinson's disease (PD). To investigate how GBA mutations cause PD, we generated GBA nonsense mutant (GBA-/-) medaka that are completely deficient in glucocerebrosidase (GCa...
متن کاملUpregulation of Proinflammatory Cytokines in the Fetal Brain of the Gaucher Mouse
Gaucher disease is caused by a deficiency of glucocerebrosidase. Patients with Gaucher disease are divided into three major phenotypes: chronic nonneuronopathic, acute neuronopathic, and chronic neuronopathic, based on symptoms of the nervous system, the severity of symptoms, and the age of disease onset. The characteristics of patients with acute neuronopathic- and chronic neuronopathic-type G...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 20 7 شماره
صفحات -
تاریخ انتشار 2011